
Field: Mathematics and Computer Science

Sector: Mathematics

Scholarship opposes: - France.

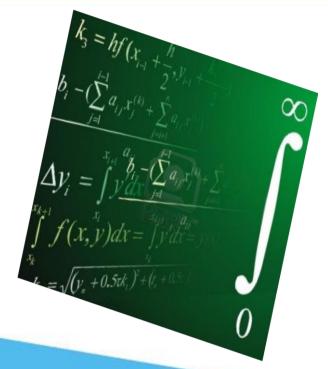
- Chine.
- Hungary.

Diploma Master Academic

PROGRAM OF THE TRAINING

Semester 1	<mark>Credits</mark>	Semester 2	Credits
Fundamental E.U 1: 18 credits		Fundamental E.U 2: 10 credits	
Distributions	6	Sobolev Space and	4
Functional Analysis	6	Variational Methods	
 Numerical Analysis 	6	 Numerical Methods for 	6
		Integral Equations	
Methodology E.U: 9 credits		Fundamental E.U 3: 8 credits	
Deep Analysis	4	 Transport equations 	4
 Introduction to PDEs 	4	 Theory of semi-groups 	4
Mathematical Modeling 1	2		
Transversal E.U: 3 credits		Methodological E.U: 9 credits	
Computer tools	2	 Spectral theory of non- 	4
English 1	1	bounded operators	
		 Differential and integral 	4
		calculus in standard spaces	
		Mathematical modeling 2	1
		Transversal E.U: 3 credits	
		Basic computer	1
		English 2	2
Semester 3	Credits	Semester 4	Credits
Fundamental E.U 4: 10 credits		U.E Fundamental E.U: 18 credits	
Element of control theory	5	Research paper	18
Conservative and dissipative	5		
systems			
Fundamental E.U 5: 11 credits		Methodological E.U: 9 credits	
• Finite Elements Approximation	6	Pedagogical learning	
• Spectral Methods for the	5	(Internship in a middle	9
Approximation of PDEs		school, secondary school or	
		TP, TD in the first cycle under	
		supervision of the head of	
		the sector) (UEM3)	
Methodology E.U : 9 credits			
Stochastic modeling	5		3
Seminar	2	Transversal E.U	
Research Methodology	2	The University and Socio-	
Transversal E.U : 3 credits		Economic Development	
Psych pedagogy	2		
Labor low	1		

Targeted business skills


H This master's degree aims to train doctoral students in applied mathematics.

Students who have obtained a master 2 will be able to join a research center provided that they complete their academic career with an internship in a specific technological field.

This training also allows professional opportunities for students before following practical internships in institutions.

Specialty: Partial Equations and Numerical Analysis

Objective of the training

This training allows students to acquire knowledge in mathematics, specialized covering most of the necessary scientific background, which allows them to solve problems in physics-mathematics, using analysis tools. Functional, scientific calculation, analysis mathematical numerical and modeling, which will allow them access to a current research horizon. The objectives are:

Allow students to acquire the tools of mathematical analysis related to the study of physical phenomena and evolutionary equations.

- Master the methods of numerical analysis and computer science allowing the simulation and understanding of complex phenomena.

- Introduce students to scientific research in the fields of applied mathematics.

- Allow students to acquire the scientific skills necessary for their integration into a team or research laboratory or in socio-economic sectors.